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THE STUDY ON THE ANALYSIS OF THE EXISTENCE AND
STABILITY OF SOLUTIONS TO THE NONLINEAR FRACTIONAL
VOLTERRA-FREDHOLM INTEGRO- DIFFERENTIAL EQUATION

ABDULRAHMAN A. SHARIF®!' MAHA M. HAMOOD??2, AND KIRTIWANT P. GHADLE?

ABsTRACT. This article investigates the existence, uniqueness, and stability of so-
lutions for a class of nonlinear Volterra-Fredholm integro-differential equations with
deviating arguments under initial conditions. By applying Banach and Schauder fixed-
point theorems, sufficient conditions for the existence and uniqueness of solutions are
established. Furthermore, Ulam-Hyers and Ulam-Hyers-Rassias stability criteria are
derived. An example is provided to illustrate the applicability of the theoretical con-
clusions.
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1. INTRODUCTION

The exploration of fractional differential and integral equations is a relatively recent
endeavor. Notable references in this area include the works of Kilbas et al. [1], Podlubny
[2], and others. Integro-differential equations are of considerable interest due to their
extensive applications across various scientific and technological fields, encompassing
natural and engineering domains. These equations arise when the boundary values of a
function are related to its values within the domain, carrying physical significance such
as total mass and moments ([3, 5, 6, 7, 8]). Integral circumstances are more accurate
gauges than local ones in some situations. See for a bibliography of recent works that
detail the existence, uniqueness, and other characteristics of solutions to particular types
of FIDEs. (]9, 10, 11, 12, 13, 14, 15]).

In their analysis of the initial value problem for Riemann-Liouville (R-L) nonlinear
FDE and FIDE with deviating arguments, the authors considered the existence and
uniqueness of solutions using the Banach fixed point theorem and the monotone iterative
technique [23, 24].

Inspired by these problems, this paper delves into novel discussions concerning the
existence, uniqueness, and stability outcomes for a nonlinear (R-L) fractional Volterra-
Fredholm integro-differential equation. The equation incorporates deviating arguments
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and operates under an initial value problem, alongside a constant coefficient A > 0
(1) Dpik(r) = Ak(r) + ¥ (v, k(v), k(9(v)), pk(v), ¢"k(v)), v € ¢,

(2) k(0) = ko, ko >0, ¥ = [0,¢],

where ©™(.),0 < o < 1, is the (R-L) fractional derivative 0 < to < 1, A > 0,¥ €
C([0,€] x R, R) are continuous functions ¥ € C(v) x 1)) and

v 13
ok(t) :/0 p1(t,0)k(0)do, go*]k(t)z/o wa(t,0)k(o)do.

The subsequent chapters of this paper are structured as follows: In Sect. 2, we introduce
fundamental definitions and results. In Sect. 3, we utilize the Banach and Schauder fixed
point theorems to establish the existence and uniqueness of solutions for problems (1)-
(2). In Sect. 4, we employ the stability results for (R-L) fractional integro-differential
equations with deviating arguments. In Sect. 5, we demonstrate our findings through
relevant examples.

2. AUXILIARY RESULTS

Before presenting our primary results, we offer the essential definitions, preliminary
details, and assumptions that will be employed in our subsequent discourse [4, 16, 17,
18, 19, 20, 21, 22].

Definition 2.1. ([1], [2]) For ro > 0 is the integral
1 T
(3) 0 k(r) = —/ (v — o) k(o) do,
o I'(w) Jo
is called the R-L fractional integral of order to.

Definition 2.2. ([1], [2]) The R-L fractional derivative to > 0, (v —1 < to < v) is
defined as

@ 98k = () @) = g [ (0 k(oo

Lemma 2.3. [1] Let v € C¥[0,¢], o € (v —1,v), v € N. Then for all v € ¢
v—1
~ v
I+ Dprk(r) =k(r) — Z Hkk(o)'
k=0

Theorem 2.4. [24] If a collection k = {k(r) € C(¢,R)} of functions satisfies uniform
bounds and equicontinuity conditions on 1, then there exists a subsequence {k,(t)}5,
with in k that converges uniformly.

Lemma 2.5. [25] Let v € C(¢p x R) where for some t1 € (0,9], m(r1) =0 & m(r) <
0, for 0 <t <vy. Then D'm(ry) > 0.

Lemma 2.6. [26] (Pachpatte’s inequality) Let w(t), wo(t), wi(t) € C(y, Ry) and let n(t) €
C(¢, ) be nondecreasing for which the inequality

w(t) < nr) + /0t wo(o)varpi(o)do + /Ot wo(o) /00 w1 (T)w(7)drdo,
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holds for any v € R,. Then
w(t) < n(r) [1 + /0t WQ(U)QIP(/OU<ZUQ(T) + wl(T))dT>d0':|.

3. PRINCIPAL FINDINGS

This paragraph will present findings related to the existence and uniqueness of Equa-
tion (1) along with the initial value problem (2). Additionally, we will outline the
assumptions that will guide our future analysis:

(A1) There exist two constants ¢* and ¢* such that
¢ = max{|p1(t,0)]: 0 <o <v <&}, ¢ =max{|pa(t,0)]: 0 <o <t < €L
(A2) There exist nonnegative constants 6, %, Jp and J; such that functionW satisfies
| (v, k1, ko, ks, ka) — U(x, 91, 92,93, 94)| < |k — H:1] + 6" [kg — 52
+ dolks — 93| + Iglks — Hal,
for each v € ¥., k;, 9, € R,i=1,2,3,4.

(A3) The function ¢ € C([0,&] x RE,R), ¥ € C(v x ), I(r) <, t €Y.

(A4) There exist p € C([0,€],R), and = : ® — R continuous function and non
decreasing function such that

(W (v, 0, 57, ko, kg)| < p(©)Z([6] + |K7] + |rol + |rgl)-
(As) Let [|p*|| = maxecy |p(r)| and there exists a constant w > 0 with
w

[ E(2w + Ew(pt + ¢°)) + wA]S + S* ”

where § = gy, 8" = [[ko.

®)

)

Lemma 3.1. Let 0 < w < 1. Assume that k € C([0,&]), k satisfies conditions (1)-(2) if
and only if k satisfies the mized type integral equation

T o
k) = 7 | 6= (Vo ko) k0. [ oo miman
3 A T
©) | entomicmin)ao +ko+ s [ =) k(o)
Proof. Suppose k satisfies the problem (1), then from Lemma 2.3, we have
v—1 L
IRDK(E) = k(v) = Y K (0).
k=0

Ask € (¢,R) sov =1, on using ¥ =1 in above equation, we have

(7) o+ Dork(r) = k(r) — k(0).
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From first equation of problem (1), we have

v 13
DR K(r) = Ak(r) + U (6, k(1), k(9(r)), /O o1 (¢, 0)k(0)do, /O pa(t, 0)k(0)dor),

using it in (7), we get

8) k(t) —k(0) = 3% [\k(x) + U (v, k(v), k(9(x)), /0 " ot o)k(0)do,

3
/0 ©a(r,0)k(0)do)].

Conversely, if k satisfies (6), then we obtain the first equation of the problem through the
(R-L) derivative of order to of both sides, which is (1). We obtain the initial condition
(2) when we plug t =0 into equation (6).

(]

Theorem 3.2. Assume that the conditions for (A1) and (A2) are met.
A+ §+ 5w SnorEm+l Sk pogmt+l

1.
T(w + 1) F(m+2)+r(m+1)]<
Then there is a unique solution to the problems (1)-(2).

Proof. Define an operator Q : C(¢, R) — C(¢), R) as

(10)  (Qk(r) = kﬁﬁ/ot(t—a)m1k(a)da+ﬁ/ot(r—a)m1

o 3
< ¥(o k(o) k0(). [ erlonkindn, [ ealonkln)do
Currently, we will demonstrate that it acts as a contraction operator. Let’s take any k, ko
|Qk — Qko| = ma;prQ]k(t) — Qko(v)]|
e

< max [ [ = 0 (|90 k0) K0, [ er(onan

te€Y (m
£ o
/0 pa(o, mk(n)dn) — ¥ (o, ko(0), ko(9(0)), /0 1o, )ko(n)dn,

£ A v o
[ entomiatan) o+ s [ 0> k(o) = kool

A ' -1 —ko(o)|do maxL t17—0"’_1
Ty | (6= () Kol + mix s [ (=)

x l(ﬂlk(o) —ko(9)]| + &"[[k(9(0)) = ko(9(0))]|

PR / k() — ko(m)lldn + 85 / () IIdn]

[(A+6+6*>£ dop' €T Gttt
- I'w+1) F'(w+2) T(v+1)

IA

[ e — kol = Sl — Kol
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where

5 [()\+5+ 5*)§m 5O<pL€m+1 (584,00§m+1]
I'w+1) 'w+2) T(w+1)
Consequently, by (9), © is a contraction. As a consequence of Banach’s contraction

principle, we conclude that €2 admits a unique fixed point, which is the solution of the
system (1)-(2). O

Theorem 3.3. Assumptions (A1) — (As) are true, then the problem (1) - (2) admits at
least one solution.

Proof. We finalize the proof through a series of steps:

Step 1 : Q is a continuous mapping.

Consider a sequence {k,,}, converging to {k,,} — k as m — oo in C(¢),R). For each
t € 1, we can observe that:

|0k (v) — k(v

= ‘F(Lm /Ot(t —0)° 'k, (0)do + ﬁ /Ot(t — o)t
3

xﬁ!(a,km(o),km(ﬁ(a)),/oo sm(mn)km(n)dn,/o

,L ' ,gm—l o 07# ‘ 70“’—1
e /0 (¢ = o)™ klo)do — s /0 (t—0)

a(o, n)km(n)dn) do

o 3
<V (o) K@), [ er(onetndn, [ ealer mitmydn)do
A ! w—1
< 7 [ (= 0" (o) ~ (o)ldo

+$ /ot(t —o)”! (“I’(U’ ki (0), ki (9(0)), /OU @1(0, )k (m)dn,

£
/ 20, )k (m)d — W (0, (o), k(D(0)), / 1o, mk(n)dn,
0 0

/O 5 p2(a, n)k(n)dn) ’da-

Since ¥, o1 and 9 are continuous functions, we have
|9k, (v) — Qk(t)|| = 0 as m — oo
This means that €2 is continuous.
Step 2 Q maps bounded sets into bounded sets in C(¢, R).

Let 8 > 0 and consider g = {k € C(¢),R) : |k| < f}, which represents a bounded set
in C(y,R). Now, for any k € pg and v € 1), we can utilize condition (A4) — (A5) and
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equation (10) to establish the following:
|2k(v)]

_L ‘ _O.m—l
_F(m)/o<t )

3
[ estosatomanao + ol + s [ Ge = o eto)lao
< T / (¢~ )" (@)= (Ik()] + (o)

¥ (0, k(o). K(9(0)), /0 " o1, mk(n)dn,

§
for(amllknldn, [ lea(on)lIk(o)ldn) do+ ol
0 0

BA [* w1
+m/0(t—0) do

< 12 (2/kl| + €0 k| + £k )

BAE®
Jrml“(m)

1 o
F(m)/oucr) Lo + [lko

paee IIE(28+ €8¢ + ¢°) )¢
To 1) T(wo+1)
(15712 (28 + €6(¢* + %)) + BAJ¢
I(ro+1) '

< kol +

< kol +

Thus, for any k € ¢g, then
1K) < 8"+ [ln*lIE(28 + €B(¢" +¢°)) + BA]S

This condition holds, providing evidence for our statement.

Step 3 Q maps bounded sets into equicontinuous sets of in C(¢, R).
Suppose k belongs to ¢g and t1, to are elements of 3 such that v; < vo. By utilizing
condition (A4) — (A5) and equation (10) we obtain the following result

I9%k(s1) = (e

< ﬁ /O (01— )" = (2 — ) [k() | do

g [ @ = o

<0, klo). K@), [ o1l [ ealemitadn) o
tiy | = @i+ s [ =

X|}¢(0,k(0),k(19(0)),/00 o1(o,mk(n)dn, [ pa(o,n)k(n)dn)||do
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BA [T - -
= W/o (1 —0)° ! = (vg — )" do
WE(28+EB(0" +¢°)) fu
+ ( I'(r) ) /O (1 = o)™ = (v = )" ]do
WE(28+EB(0" +¢%)) e
+ < T(w) ) /t (1 = o)™ de
A3 +0°5 (26 + £6(" + 2%)) o
< NCESH [2(to — )" + (7 — 19 ) ]

— 0 as vy — to.

The assertion that 2 : C(¢, R) — C(¢,R) is continuous and entirely continuous can be

made using the Arzela-Ascoli Theorem 2.4.
Lastly Q(¢3) C ¢s

Let k € pg we demonstrate that Q(pg) € g for any ¢ € 9, utilizing condition (A4) —

(A45) and equation (10) to establish the following.
1

O] = i [ = ulo ko) k(). [ eatomimin

T'(tv)

[ ertomptaan) o + ol + s [ 07t do
o w2(0,n)K{n)an 0 T(w0) J,

< i €= @ (K@) + 0@+ [ etk
¢ BA [T .
| st mplitnan)ao + ol + s [ (=t
*= L o 1 ‘ o—
< w2l + &kl + 627Kl s [ (6= )+ ol +
w7 IE (2w + (et + %) )€
< folf + T(w+1) T(w+1)
[IIM*IIE(M + &w(p' + @")) + /ﬂ] &r
< kol + NCESY )

Therefor
19k < 8" + wE[[In"|E(2w + Ew (" + %)) + BA]S
by the inequality (5), we have
QK| < w,
and hence
Qpp) C vp
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The Arzela-Ascoli theorem shows that  is relatively compact in both scenarios, and
Schauder’s fixed point theorem states that €2 has a fixed point. Then, €2 is a solution of
the system (1)-(2). O

4. STABILITY RESULTS

We investigate the problem (1)-(2) is Ulam stability in this section. The following
issue is now being considered for Ulam stability.

(11) Dik(r) = Ak(r)

3 3
— qﬁ(t,k(t),k(ﬁ(t)),/o cpl(no)]k(a)da,/o gpg(t,a)k(o)da),

and the following inequalities

‘D‘(}L}'(t) — AF(r) — o(r, F(x), k(d(r)), /Ot p1(t,0)F(0)do,
3
(12) /0 <p2(t,c7).7:(0)d0)‘ <k,
)Sgﬂ}'(t) — AF(r) = ¥(t, F(r), F(I(r)), /Otcpl(t, 0)F(o)do,
€
(13) /0 26, 0)F(0)do)| < e0lv), v € v,

‘mguf(t) —AF(x) — ¢(x, F(x), FO(x)), /O " 1(x, 0) Flo)do,

3
(14) /0 Ds(x,0)F(0)do)| < 0(0), c e v,

Definition 4.1. [19]. If a real number exists, the Eq. (11) is Ulam-Hyers stable. Cy >
0 such that for each € > 0 and for each solution F € C(¢,R) of inequality (11) there
exists a solution k € C(¢,R) of equation (11) with

[F(v) = k(v)] < Cp, ve.

Definition 4.2. [19]. The equation given by (11) is of a general nature. If a solution
ezists that is Ulam-Hyers stable, denoted as 14 € ([0, 00),0,00) with 14(0) = 0, then for
each solution k € C(, R) of the inequality (12), a corresponding solution k € C(v,R) of
the equation (11) exists.

|F(r) —k(v)] < vy, v e

Definition 4.3. [19]. The equation denoted as (11) demonstrates Ulam-Hyers-Rassias
stability concerning Co € C(¢,R). This stability holds true if a real value Co > 0 exists,
satisfying the condition that for each ¢ > 0 and for every solution k € C(¢,R) of the
inequality (13), there is a corresponding solution F € C(1,R) of the equation (11).

lk(t) — F(v)] < eCyyry, v E€ Y.
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Theorem 4.4. Supposing that conditions (A1), (Az), and (11) hold, the stability of the
problem (1)-(2) under Ulam-Hyers criterion is established.

Proof. For each ¢ > 0, consider a function k € C(¢,R) that fulfills inequality (11);
furthermore, consider the unique solution of the following issue as k € C(¢, R).

v 3
D k() = k() + \Il(t,]k(t),k(ﬂ(t)),/o npl(t,a)k(o)da,/o pa(r,0)k(0)do),

k(0) =ko, ter, 0 <o <1
Using Lemma 3.1, we obtain

1

K0 = fy [ =" (k@) KO, [ oo

3
(15) /0 wa(o, n)k(n)dn) do + Kko.

By integrating (11), we obtain:

(16) < m

Using (A1), (A2) and the inequality (16), for every v € ¢, we have:
[[le(r) — k(o)]l

k(t) — ko — A

‘ tv—1 o L ‘ t—o o—1
m/o (t—0)" 'k(o)do F(m)/o( )
3

¥(o:k(0). k00, [ ertnmnydn. [ atnmen)in) do

L ! — o)1 o) — k(o) ldo L i _ g\l
ey | =)~ k@)l + s =)

do

o ¢
W(U,k(a),k(ﬁ(a)),/o @1(n,n)k(n)dn7/0 wz(n,n)k(n)dn)
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et A v .
=Thw+1) T /o (c = )" k(o) — k(o) |do

1 [t - i * . )
i 0 [‘5”‘“") (o)) + 8" [(2(e) ~ k(Do)

- ¢
+50/0 ¢1(U,n)llk(n)—k(n)lldn+56/0 m(mn)llk(n)—k(n)lldnl do

Thus
Ik(s) ~ k() < F(;til)ﬂ”rfm*f*) /(;<r—a>m1||k<a>—k<a>|do
( Laor—é_m¢050)/ (/ H]k Hdn
+ / Ik (n) |dn>da
- F(m+1) +/ . ﬁj 5*)@_0)%1[”“&(”)_k<")||
(17) s 1202 [ k(o) = kol o

Utilizing the inequality provided in Theorem 3.3, attributed to Pachpatte, on equation
(17), we derive the following result:

[k (c) — k(o)
ex™ SA+646% —
Sr(m+1){1+/0 T &9 1
T (N4 0+ 6%) wot1 | (P& + %)
xemp(/o 71“(11)) (€ —0o) 1+7(/\+6—|—5*0) dn)da]
€& SN+6+0%) —
Sr(m+1){1+/0 ORI 1
Tr(A+d+07) w1, (P00 + ¢705)
xexp(/o | OB T+ (A+5+5*0)}d77)d0]
= €C¢.
Thus the problem (1)-(2) is Ulam-Hyers stable. O

Theorem 4.5. Given that the conditions (A1), (A2), and (11) are satisfied, let’s further
assume the existence of an increasing function 9 € C(¢¥,R") and a positive constant
Uy > 0, such that the inequality I9(v) < Wyd(tr) holds for any t € J. With these

assumptions in place, it follows that the nonlocal problem (1)-(2) exhibits Ulam-Hyers-
Rassias stability.
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Proof. Equations (1)-(2) and the inequality (14) are investigated, building upon the
conditions stated in Theorem 4.4. The Ulam-Hyers-Rassias stability of the issue (1)-(2)
can be verified by conducting the same approach again. O

5. APPLICATION

Consider the following problem:
1 e, |

(18) DYI() = glI(e)| + v+ oo (r) + S T(e)
1 [T cos(ot) L g=20r
+ 5/0 213 |k(a)|d0+/0 mﬂk(a)\da
(19) k(0) =1, v =[0,1].

Notice that the problem (18)-(19) can be treated as a special case of Egs. (1)-(2) if we
put v = %, E=1, A= % and there are exist constants

I | I |
"= T 0T 0T g
From equations(18)-(19) and inequality (9), we have
*\ £10 Leto+1 * -0 ¢to+1
O:[(A+5+6)§ doir'é LS | =049 <.
I'(w+1) 'w+2) T(w+1)

As a result, the equations (18)-(19) have a unique solution on 1 and are Ulam-Hyers
stable according to Theorem 4.4.
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